FACULTY OF CIVIL ENGINEERING

SUBJECT CARD

Name in English:	Underground structures – urban infrastructure
Name in Polish:	Budownictwo podziemne – infrastruktura miejska
Main field of study (if applicable):	Civil Engineering
Specialization (if applicable):	Civil Engineering
Level and form of studies:	1st / 2nd level*, full-time / part-time *
Kind of subject:	obligatory / optional / university-wide *
Subject code:	CEB003962
Group of courses:	YES -/ NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30			30	
Number of hours of total student workload (CNPS)	60			60	
Form of crediting	Examination / crediting with grade *	Examination / crediting with grade *	Examination=/ crediting with grade *	Examination / crediting with grade *	Examination=/ crediting with grade *
For group of courses mark (X) final course					
Number of ECTS points	2			2	
including number of ECTS points for practical (P) classes				2,0	
including number of ECTS points for direct teacher-student contact (BK) classes	1,0			1,2	

* delete as appropriate

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. The student possesses knowledge of structural mechanics.
- 2. The student knows the principles of soil mechanics with relation to civil engineering.
- 3. The student knows standards of concrete structure designing.

SUBJECT OBJECTIVES

- C1. Learning the principles of interaction: tunnel support surrounding rock mass
- C2. Gaining the different types of underground structures and various executing technologies.
- C3. Skills acquisition of design of reinforced concrete tunnel support.
- C4. Skills acquisition of advanced design of tunnel support located at great depth
- C5. Skills acquisition of solving, interpreting and verifying of the results of analytical calculations.

C6. Strengthening the ability to work on the task entrusted to and awareness of the need to seek new theoretical and practical solutions.

SUBJECT EDUCATIONAL EFFECTS			
Relating to kn	owledge:		
PEK_W01	Student has an in-depth knowledge of analysis, design and construction of		
	underground structures in urban infrastructure.		
PEK_W02	Student has an in-depth knowledge of rock mechanics and tunnel support design.		
Relating to ski	ills:		
PEK_U01	The student can properly create a computational model of underground structure.		
PEK_U02	The student can properly design all the elements of underground structure.		
Relating to so	cial competences:		
PEK_K01	The student can works independently or with a team.		
PEK K02	The student is aware of the need to continuously increase own knowledge in the		
_	field of design techniques of underground structures.		

PROGRAMME CONTENT			
	Form of classes - lecture	Number of hours	
Lec1	Introduction - the basic definition and classification of underground urban infrastructure.	2	
Lec2	Designing of shallow underground structures.	2	
Lec3	Loads acting on shallow underground structures.	2	
Lec4	Loads acting on shallow underground structures – further information.	2	
Lec5	Executing technologies of shallow tunnels	2	
Lec6	Trenchless technologies of shallow tunnels execution	2	
Lec7	Specific features of deep tunnels. Advanced ventilation systems of long and deep tunnels	2	
Lec8	Longitudinal profile of deep tunnels and its implication for drainage and ventilation facility.	2	
Lec9	Advanced systems of waterproofing of tunnel structure	2	
Lec10	Critical depth. Estimating the value of critical depth for excavation located in rock mass governed by: a) Coulomb - Mohr or b) Hoek – Brown failure criterion.	2	
Lec11	Deformation earth pressure. The elastic-plastic problem of circular excavation at great depth - Part I: elastic deformation.	2	
Lec12	Deformation earth pressure. The elastic-plastic problem of circular excavation at great depth - Part II: plastic deformation.	2	
Lec13	Static earth load acting on tunnel support. Engineering methods for assessing static rock pressure. Role of tunnel support mechanical characteristics on rock-tunnel support interaction.	2	
Lec14	Parametric evaluation of the quality of the rock mass. Geomechanics classifications: RQD, RMR, Q, GSI.	2	
Lec15	New Austrian tunneling method	2	
	Total hours	15	

	Form of classes - class	Number of hours
Cl1		
	Total hours	

	Form of classes - laboratory	Number of hours
Lab1		
	Total hours	

	Form of classes - project	Number of hours
Proj1	Presentation of the scope of the project, the completion and the available literature. Discussion of the design scope.	2
Proj2	Principles of cross-section design of tunnel support - Car tunnel. Discussion on methods of waterproofing of tunnel structure. Individual students work on projects.	2
Proj3	Principles of cross-section design of tunnel support - railway tunnel. Individual students work on projects.	2
Proj4	Practical use of geomechanics classification of rock mass: RMR and GSI	2
Proj5	Presentation of Hoek-Brown failure criterion. Relations enabling estimations of failure criterion parameters based on the GSI classification. Estimation of critical depth.	2
Proj6	The elastic-plastic boundary value problem of circular excavation at great depth: elastic and elastic-plastic solution. Rock mass pressure acting on tunnel support as a function of plastic zone radii.	2
Proj7	The value of rock mass pressure corresponding to maximum radii of plastic zone.	2
Proj8	Verification of the student calculations of rock mass pressure acting on tunnel support.	2
Proj9	Computational model of static interaction in the system: tunnel support – rock mass. Evaluation of parameters of computational model.	2
Proj10	Strength designing of concrete tunnel support.	2
Proj11	Discussion on the students final design of tunnel support and verification of the internal forces of tunnel structure evaluated by students.	2
Proj12	Principles of proper ventilation preservation in tunnel: Pulsfort and Bendelius method.	2
Proj13	The problem of preserving the safety in tunnel. Elements of additional equipment in tunnel.	2
Proj14	Drilling and blasting technologies in tunnel excavation execution.	2
Proj15	Presentation of the final design of tunnel support.	2
	Total hours	30

	Form of classes - seminar	Number of hours
Sem1		
	Total hours	

	TEACHING TOOLS USED
N1.	Lecture: classic lecture and multimedial presentations
N2.	Project: solving of calculation example, multimedial presentation,

EVALUATION	EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT				
Evaluation	Educational effect	Way of evaluating educational effect			
F – forming (during	number	achievement			
semester), P –					
concluding (at semester					
end)					
F1 (Project)	PEK_U01,	Partial evaluation of students design of tunnel			
	PEK_U02,	support			
	PEK_K01				
F2 (Project)	PEK_U01,	Presentation of the final tunnel design.			
	PEK_U02,				
	PEK_K01				
P = 0,5xF1+0,4xF2+0,1xP4	ARTICIPATION (projekt)				
F1 (lecture)	PEK_W01,	Exam			
	PEK_W02,				
	PEK_K02				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Bieniawski Z. T.: "Engineering Rock Mass Classifications", Wiley, 1989.
- [2] Hoek E.: Support of underground excavations in hard rock, 1995.
- [3] Megaw T.M.: Tunnels: planning, design, construction, 1983.
- [4] Kolymbas D.: Tunneling and tunnel mechanics: a rational approach to tunneling, 2005.

SECONDARY LITERATURE:

[1] Lunardi P.: Design and construction of tunnels, 2008.

SUBJECT SUPERVISOR (NAME AND SURNAME, DIVISION, E-MAIL ADDRESS)

dr. hab. inż. Dariusz Łydźba, prof. PWr; Katedra Geotechniki, Hydrotechniki, Budownictwa Podziemnego i Wodnego, Dariusz.Lydzba@pwr.edu.pl

DIDACTIC TEAM MEMBERS (NAME AND SURNAME, DIVISION, E-MAIL ADDRESS)

Katedra Geotechniki, Hydrotechniki, Budownictwa Podziemnego i Wodnego dr inż. Irena Bagińska, Irena.Baginska@pwr.edu.pl dr inż. Andrzej Batog, Andrzej.Batog@pwr.edu.pl dr inż. Janusz Kaczmarek, Janusz.Kaczmarek@pwr.edu.pl dr inż. Marek Kawa, Marek.Kawa@pwr.edu.pl dr Joanna Stróżyk, Joanna.Strozyk@pwr.edu.pl dr inż. Adrian Różański, Adrian.Rozanski@pwr.edu.pl mgr inż. Matylda Tankiewicz, Matylda.Tankiewicz@pwr.edu.pl mgr inż. Maciej Sobótka, Maciej.Sobotka@pwr.edu.pl mgr inż. Damian Stefaniuk, Damian.Stefaniuk@pwr.edu.pl mgr inż. Magdalena Rajczakowska, Magdalena.Rajczakowska@pwr.edu.pl Katedra Mechaniki Budowli i Inżynierii Miejskiej: prof. dr hab. inż. Cezary Madryas, Cezary.Madryas@pwr.edu.pl

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT Underground structures – urban infrastructure AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY *Civil Engineering* AND SPECIALIZATION Civil Engineering

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives ***	Programme content ***	Teaching tool number ***
	Kno	owledge		
PEK_W01	K2_W05, K2_W06, K2_W11, K2S_CEB_W20, K2S_CEB_W21	C2, C3	Lec1 – Lec6	N1
PEK_W02	K2_W05, K2_W11, K2_W13, K2S_CEB_W21	C1, C2, C3	Lec7-Lec15	N1
	<u> </u>	Skills		
PEK_U01	K2_U04, K2_U05, K2_U07, K2S_CEB_U19, K2S_CEB_U22	C3, C4, C5, C6	Proj2 - Proj7, Proj8 - Proj10, Proj12 - Proj14	N2
PEK_U02	K2_U06, K2_U07, K2_U09, K2_U12, K2S_CEB_U19, K2S_CEB_U22	C3, C4, C5, C6	Proj2 - Proj7, Proj8 - Proj10, Proj12 - Proj14	N2
	Social	competence		
PEK_K01	K2_K03	C5	Proj2 - Proj5, Proj7, Proj9, Proj13, Proj14	N2
PEK_K02	K2_K01	C6	Proj1, Proj4, Proj8, Proj11, Proj13, Proj14	N2

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above